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ABSTRACT

An analytic model of long, propagating free wave perturbations to

an established upper ocean density front is developed. The primary

object of the model is to illuminate basic frontal wave mechanisms for

possible subsequent use in more sophisticated, numerical models. The

model is of the barotropic class but has ageostrophic dynamics because

of the basic state adopted, essentially Stommel's (1966) model of the

Gulf Stream with uniform potential vorticity and order one Rossby number.

The model assumes inviscid dynamics apart from a narrow dissipative zone

adjacent to the surface front. The latter exerts a bulk effect on the

larger inviscid zone, especially in generating small, but finite, cross-

stream flow in the basic state. For zero cross-flow the resulting waves

are stable, have downstream phase speeds that are slow compared to the

current speed and that increase with frequency, and have anomalous

dispersion. The phase speeds compare well with the analysis of observations

of propagating Gulf Stream meanders by Halliwell and Mooers (1983). For

finite cross-flow the waves grow slowly in the downstream direction when

flow is out of the current and decay when flow is into the current. The

rates of growth or decay are independent of wavelength. Corresponding

net growth or decay in the wave kinetic energy is produced by action of

the cross-correlation wave Reynolds stress against the lateral shear of

the basic state current.
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1. Introduction

Wave perturbations to upper ocean density fronts are common mesoscale

features, best known from decades of observations of the Gulf Stream

front downstream of Cape Hatteras where they have been called meanders.

Their major properties are low subinertial frequencies and long wavelengths.

For the Gulf Stream typical ratios of downstream wavelength to width of

the basic current are about 10 (Halliwell and Mooers, 1983). Perhaps

most puzzling is the slowness of the observed phase speeds, typically

-4. %only a few percent of the basic current speed. These waves also show a

strong tendency toward downstream spatial growth over scales comparable

to the wavelength itself. Further background, including an extended

discussion of previous models of related wave dynamics, is given in my

4recent paper on the subject, Garvine (1983), hereinafter termed G83.

The model I develop here is an extension of G83 and has the following

seven major characteristics:

1. The model is effectively barotropic in that only the upper layer of

uniform buoyancy is active; this restriction is in contrast to

baroclinic models, such as Orlanski's (1969) where upper and lower

layers are both active and coupled. (7 /I
2. The undisturbed or basic state is a simple extension of Stommel's

(1966, p. 112) model of the Gulf Stream. The potential vorticity P

is assumed to be uniform. Stommel reasoned that since observations

of the source water for the Gulf Stream in the western Atlantic

showed nearly uniform P, its subsequent advection into the current

Nwhere inertial effects dominate should yield a current of uniform

P, also. Very recently this reasoning has been significantly

'pa-4
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'^ supported and strengthened by the theoretical work of Rhines and

Young (1982 a,b). Indeed, maps of P presented by McDowell, et al.

(1983) for water above the thermocline and below the direct reach

of atmospheric influence show remarkable uniformity over the wind

gyre of the North Atlantic.

3. As a consequence of (2), the model has ageostrophic dynamics,

because the strong downstream frontal jet of the basic state has a

Rossby number of 0(1), i.e., relative and planetary vorticities are

of the same order.

4. The upper layer flow is taken as inviscid apart from a narrow,

dissipative zone adjacent to the surface front. There, however,

local turbulence production is likely, so that P cannot be conserved
along streamlines. Johns and Watts (1982) show a vertical section

of P contours across the Gulf Stream downstream of Cape Hatteras

which displays little change in P above the thermocline except for

a small area near the surface front roughly coincident with cyclonic

shear in the downstream current. Assaf (1977) developed a steady

state model for the Gulf Stream where vertical, interfacial friction

operated wherever the local densimetric Froude number exceeded a

threshold value. His numerical calculations showed realistic

cyclonic shear zone structure. Here the basic concept of Assaf's

model is employed, but not the details, since they would prevent

analytic description, even in a steady state. Instead, as in G83,

I stipulate that wave perturbations merely displace or wrinkle the

inner dissipative zone without otherwise altering its structure.

Its bulk effect on the outer, inviscid zone appears as constraints

on interface depth and cross-stream velocity at the common boundary.

.. . . . .... .~ .. . ... ... .. • . .. . . . . ? - .? ' ,,. - .. :-. * .. . *'- .
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Its primary influence is the imposition of a small, cross-stream

basic state current upon the inviscid zone required to balance the

flux of mass across the frontal interface in the dissipative zone

induced by turbulent entrainment.

5. The basic state in general has a small cross-stream current u, a

result of this entrainment. For u=O waves are stable, but for 5>0

they grow downstream, while for 5<0 they decay.

6. Only linear (small amplitude) waves are treated.

7. The model is developed for the long wave limit only.

In G83 I treated a similar problem. This paper, however, differs

in three important ways. First, here I treat u0O, whereas in G83 u=0.

Second, here I relax the stipulation of G83 that shear in the locally

parallel velocity vanish at the boundary between the dissipative and

inviscid zones. In G83 this constraint permitted only stationary waves,

that is, steady state meanders with zero phase speed. Here the small

shear permitted allows propagating waves. Third, here I treat only the

long wave limit and thereby obtain simple, analytic solutions, whereas

in G83 I treated arbitrary wavelength but had to obtain solutions numerically.

Martin (1981) developed a numerical model with similar characteristics

to those above. In applications to the Gulf Stream front he found slow,

downstream wave propagation and sharp changes in rates of wave energy

growth with 5 having fastest growth for M>0. Paldor (1982) developed a

similar model to G83 having uniform P and G=O, but he assumed inviscid

flow up to and including the surface front. Using a Rayleigh integral,

he proved that this flow was stable for small perturbations of any

wavelength.

.
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Section 2 presents the model development, section 3 the basic

state, and section 4 the perturbation equations. Section 5 then gives

the wave properties when u=0 and section 6 for uO. Section 7 concludes

the paper.

2. Model development

Fig. 1 shows a schematic of the model geometry in its basic (unperturbed)

state. Two incompressible layers are treated, a deep ambient water

layer of uniform density p., and a light water layer above the frontal

interface of uniform density po-p. The depth of the latter is d* which

vanishes at the surface front. (Asterisks denote dimensional variables.)

The source of the light water is called the parent pool where the depth

is given as d*. Within the parent pool the potential vorticity is

uniform and given by P*=f/d*, where f is the Coriolis parameter.

The model will be limited in application to upper ocean density

fronts where the flow is inviscid apart from a narrow region near the

surface front termed the dissipative zone (Fig. 1) where d*<do*. The

dissipative zone represents the domain where locally high turbulence

production is expected from such processes as mean vertical shear instability

owing to locally high densimetric Froude numbers, or, equivalently, low

gradient Richardson numbers. In this domain, in contrast to the inviscid

zone, potential vorticity will not be conserved along particle paths.

Instead, the locally high vertical friction will generate cyclonic

horizontal shear, as in the steady state models of Assaf (1977), Kao

(1980), and Garvine (1980) for the Gulf Stream front. In addition,

vertical volume flux by turbulent entrainment across the frontal interface

I-.. - . . - , . . . , . . , 1 . . . .. . ,. . . o . . .
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Figure 1. Schematic cross-section of the model front.
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in the dissipative zone will force horizontal volume flux across the

inviscid zone into or out of the parent pool, depending on the net

entrainment direction in the dissipative zone.

Small amplitude free wave disturbances will be imposed upon the

basic state. In the inviscid zone these will be determined analytically

by solving the perturbation equations using an asymptotic expansion for

small wavenumber. In the dissipative zone no explicit solution will be

attempted for the perturbations, because even the basic state there is

too complicated for analytic solution. Instead, as in G83, I will

stipulate that wave perturbations will merely displace the dissipative

zone without otherwise altering its structure. Its bulk effect on the

larger inviscid zone will nevertheless, be accounted for by inner boundary

conditions on the interface depth and cross-stream velocity at the

common boundary, termed the inner boundary (Fig. 1). The primary effect

of the dissipative zone will be the generation of a source or sink of

cross-stream volume flux, which, in turn, will affect fundamentally the

stability of the waves in the whole domain.

.p Standard oceanographic model restrictions are imposed. The Boussinesq

approximation is assumed valid, wind stress is neglected, vertical

gradients in horizontal current in the inviscid zone are absent, and

beta effects are neglected. The upper layer is assumed shallow compared

to the water depth, so that the upper layer pressure field is in isostatic

equilibrium. The ambient water is taken to be at rest and the front to

have zero mean velocity of propagation normal to itself; these latter

restrictions may be removed following G83, but have no fundamental

effect on the properties of the frontal waves or their stability.

.
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The independent variables are the time t*, the cross-stream distance

x* (Fig. 1), and the downstream distance y*; u* and v* are the corresponding

velocity components and the potential vorticity is P*. Following G83 I

introduce scaled variables as

: .'3(x ,y ) =-(x* ,y * )Ix , t ft*

(uv) (u*,v*)Ici, d-d*/db*

P-P*db*/f

where ci(g'db*)' with g'-g Ap/p., the reduced gravity, so that ci is

the linear internal wave velocity and x-ci/f, the internal Rossby radius.

As these scaled variable imply, ci is the scale for the current, A for

the cross-stream distance, and f/db* for the potential vorticity.

In these scaled variables the governing equations of potential

vorticity, cross-stream, and downstream momentum are respectively (G83):

.-..

DP _ (1)

Ou- v + ad 0, (2)
aDv ad

-v + u + t = o (3)

'd

where D/Dt a/at + ua/ax + v a/ay, the material derivative, and P

(av/ax - au/;y +l)/d. Here (1) states the conservation of potential

vorticity along particle trajectories and will be used as an alternate

to the continuity equation.

..

-%4
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3. The basic state

The flow state is decomposed in standard fashion into a basic state

that represents the steady, undisturbed flow and a perturbation, here

assumed small. Thus,

u U + u', v v + v', (4)

d =a + d', P=- + P'

where overbars denote basic state and primes perturbation variables.

As in G83, the essential model physics arises from the assumption

of uniform potential vorticity for the basic state in the parent pool

and, thus, for the entire inviscid zone as well, an idea Stommel (1966)

was first to postulate. Consequently, T = 1. Since I further assume

the front is straight and parallel to y in the basic state, a/ay << ;/9x.

As shown in G83, the solutions for 2 and v for the inviscid zone without

cross-stream flow (6=O) are then

'.,

a = voex, v = 1-a = voe-x (5)

where v. = l-d. with do the scaled depth at the inner boundary. Equations

(5) are the same as Stommel (1966, p. 111) obtained, except here vo<l,

i.e., the frontal interface need not surface at the inner boundary

* (d0>O).

Small, but finite, basic state cross-stream volume flux in the

inviscid zone will be generated by mass entrainment in the dissipative

zone. Within the inviscid zone this volume flux is uniform, so that in

f
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the absence of y-derivatives we have from mass continuity u* a* Ub d*

where Ub* is the (dimensional) cross-stream flow into the parent pool.

For convenience, let this be represented by

ub ci Se F

where Se denotes the sign of the entrainment (S = +1 for entra gnt

into the upper layer and Se = -l for entrainment into the ambiE layer)

while F -u *I/ci is the Froude number indicating the relative .:ed of

the outflow (or inflow). In contrast to small-scale density fronts

where F = 0(1) (Garvine, 1974; Kao, et al., 1977), for the large scale

fronts of interest here F<<l, typically 1O2. With this nomenclature we

then have

se F/a. (6)

It may be shown that u alters the basic state solution of (1) - (3) only

at O(F2 ). Because I will include only terms through O(F) subsequently,

(5) will still be valid for a and .

F will emerge as the small parameter associated with frontal wave

stability. The basic state of G83, in contrast, assumed 5=O (or F=O)

and was associated with only stable waves.

4. The perturbation equations

Substitution of the decomposition forms (4) into the governing

equations (1) - (3) and retention of only first order perturbation terms

-.
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yields the inviscid zone linear perturbation equations. The perturbation

potential vorticity equation is especially simple, since (1) dictates

conservation of P following the fluid, while P = 1 by postulate. Thus,

P' = 0 everywhere in the inviscid zone, yielding:

d' 0. (7)
ax ay

The perturbation x- and y- momentum equations are

+ u' v, +-ad' F- 0, (8)

av' + - av' + (+ d L , ad' SF av' (9)
-t ay (I )u + a ax

Note the appearance in (8) and (9) of both downstream advection terms,

with v(x) as a factor, as well as cross-stream advection terms containing

S F/a = U; these latter terms bring the small parameter F into thee

problem.

Following G83, I adopt the wave forms:

u' (x,y,t) = -i [Xo(x) + iFXl(x)]e0, (lOa)

iov' (x,y,t) = [Y(x) + iFYl(x)]e , (lOb)V'o

d' (x,y,t) = [Zo(x) + iFZl(x)]e i ,  (lOc)

where i : ,-FTand ) is the phase function given by

0 (y,t) E (k-iFK)y-,t. (lOd)

W~~, *o. • . ...
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In evaluating any of the perturbation variables the real part must be

taken. Here k is the scaled wavenumber, taken as real, while W is the

scaled wave frequency, shown later to be real, and K anticipates the

possibility of wave instability (K>0) or decay (K<0) when the wavenumber

has an imaginary part for small, but finite, F. The wave forms anticipate

it u' will be in quadrature phase with v' and d' when F=O, while a

primary effect of F>O will be to change the relative phases of the

variables. The eigenfunctions Xo(x), Xl(x), Yo(x), etc. will all turn

out to be real. Subscripts "o" denote the eigenfunctions for the

limiting case of F=O (no cross-flow in the basic state) while subscripts

"l" denote corrections for F small but finite.

Substitution of the wave forms (10) into the perturbation equations

(7) - (9) and retention of only 0(1) terms yields the following zeroth

order system of ordinary differential equations.

dY,- k X0 - 0, (lla)

(k W - ) Xo - Yo + d--: O, (llb)dx
(k v - ,) o 0 - (l+d-) X, + k Zo = 0. (llc)

These are identical in form to (14) of G83 with w=O, as expected, since

there u=O.

Retaining terms through O(F) yields the first order system.

-1adY)
-. " - kXl " = -Xo

(kx -d 1  1 +(12a)
dvd(k-: -a) X K X _ 1 b

(k - w)Y1 - (l+5dx)X1 + kZ1  K(VYO + Z,,) e AdY0  (12c)
dx

0_d
:P



The left sides of these are iuentical to (11), but inhomogenous or

forcing terms now appear on the right generated by the coupling of

finite cross-flow and downstream wave amplitude growth or decay to the

F=O wave field.

5. Long waves without cross-stream flow

I treat in this section long waves without cross-stream flow in the

basic state, i.e., in the limits k2<<I and F=O (or u=O). The system to

be solved is (11) for k2<<l subject to the boundary conditions for

frontal "trapped" waves

Xo, Yo, Zo - 0, for x- , (13)

and to those at the displaced inner boundary where x = h(y,t). The

inner boundary displacement may be written, consistent with the wave

forms (10), as

h(y, t) = Hei0,

where H is the frontal displacement amplitude. The inner boundary

conditions I impose, as in G83, are that the interface depth at the

displaced inner boundary is unchanged from that of the basic state, d.,

while the fluid velocity component locally normal to the boundary is

likewise unchanged. For 6=0 these are (G83), respectively:

Zo(O) = -voH = -1, (14a)

and Xo(O) = -kvoH + wH = -k + w/v,, (14b)

where I equate vH to unity for convenience, since the particular amplitude

of a free wave may be chosen arbitrarily.
.5J
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The mathematical problem then is to solve the system (11) subject

to the boundary conditions (13) and (14). This is nearly the same

problem as in G83, but with two important differences. First, the

6 stipulation of G83 that there be no shear of the locally parallel velocity

component at the inner boundary is relaxed, i.e., now only the normal

component must match that of the (unchanged) dissipative zone. Second,

an asymptotic expansion is employed yielding analytic solutions through

O(k2 ) for k2<<l. The first difference permits the existence of propagating,

as opposed to stationary, waves, while the second provides simple,

analytic solutions in a limit of primary physical interest.

If one stipulates that the dissipative zone is merely displaced by

the wave perturbations, but is otherwise unaltered, as here and in G83,

and also stipulates the no shear condition, as in G83, then one has

Yo(O) = voH = 1. (15)

If this is inserted, together with the inner boundary conditions (14),

into the y-momentum equation (llc) and evaluated at x:O, one finds

w=0 for all k, i.e., only stationary or steady state waves are possible,

as in G83. Conversely, relaxing the no-shear stipulation, as here,

permits wf0 or propagating waves.

Appropriate asymptotic expansions for the long wave limit are

X.(x) = k[Ro(O)(x) + k2Ra(1)(x) +

YO) = Y. (0(x) + k2Yo( 1)(x) + (16)

Zo(x) = Zo( 0)(x) + k2Zo( 1 )(x) +

Here k2 is the small expansion parameter, while all eigenfunctions on

the right, including Ro(0 ) and R0
(1) , are 0(1). These forms thus anticipate

- i .. .. . .. . . , . - ., . ., . ,, .. ... ,..-. - ... . . ... .. . . .. ... . . . . . . . * .. .. .. .
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that X. (or u') will be O(k), while Y, (or v') and Z. (or d') will be

0(1).

Substituting (16) into (11), assuming that 0 = O(km) with m>l, and

retaining only the zeroth order terms in k yields

dYo(O)/dx - Zo 0, (17a)

-Yo(O) + dZo(O)/dx = 0, (17b)

+Y()OA 0 0. (17c)
v~oO)-l+x)R (O) + Z (0 )  0 .(1 c

Equation (17a) indicates that potential vorticity changes are

absent as a result of a balance between the perturbations in lateral

shear and interface depth, while (17b) indicates the cross-stream momentum

balance to this order is geostrophic. This pair may be solved easily

and the boundary conditions (13) and (14a) imposed to give

a(0)

y(O)(x) = -Zo(O)(x) = e~x . (18)

Thus, at this order of approximation, Y:(O) satisfies (15), indicating

zero shear of the parallel velocity across the inner boundary.

The downstream momentum equation (17c) may now be solved easily to

yield

Ro((x) Xo (x)/k -ex. (19)

This identically satisfies the boundary condition (14b) to zeroth order.

4
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The simplicity of (17c) and its solution (19), however, masks a

complicated downstream momentum balance between four of the six terms of

the perturbation equation (9): downstream advection by the basic state

(v av'/ay), the Coriolis term (u'), cross-stream advection by the perturbations

(u'dv/dx), and the perturbation pressure gradient (ad'/ay). Consequently,

(17c) is highly ageostrophic, reflecting the 0(1) Rossby number of the

basic state, and lacks only the local acceleration term and cross-stream

advection by the basic state of (9).

The first order equations in k2 are

dY- '-/dx - Zo( )  R , (20a)

/>? _y(l) + dZ°( 1)/dx = -RO 0
) ,  (20b)

vYo ( l) -(l+-)Rol) + Zo( I = (w/k 3 )y 0
0 ) . (20c)

This system differs from the zeroth order one in three ways: the cross-

stream flow now participates in the vorticity balance of (20a), downstream

advection of momentum by the basic state renders even the cross-stream

momentum balance ageostrophic in (20b), and the local acceleration is

added to the downstream momentum balance in (20c). The latter represents

the only time dependent term in the governing equations to first order

and brings w into the problem. Consistency requires w = O(k3 ) or m=3.

-. Equations (20a) and (20b) may be solved for y,(l) and Z°(I ) subject

to (13) and the boundary condition Zo(1)(O) = 0, consistent with (14a),

to yield

Z.(I)(x) voe'X(l-e-x) 1 xex, (21a)

" . -.

-""e " " € -.- ,-. ...... -' .. .. ' .... - . .. - .... - . ....-. - . . . .•.-.. - . •.- ° . '--- .'. ..
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Y0.ll(x) (1 2 vo)ex + 1 - 1 xe-X.  (21b)

.;-:4(1
If (20c) is now solved for Ro and evaluated at x=O one finds,

R.0 1 )(0) Vo (3-2v.) -

However, the boundary condition (14b), if evaluated to O(k2), gives

Ro( I ) ( 0 ) = W
vok 3

Equating these gives the dispersion relation

2
= v° (3-2vo)k 3  (22)( 6

Since k is small and w = O(k3), these waves have low subinertial

frequencies and slow phase speeds. Because the waves are so slow, their

corresponding downstream fluid acceleration av'/at enters the downstream

momentum balance only at O(k2 ), so that the solutions to this order, as

well as to 0(), must be found in order to determine w.

.For the limit of vanishing dissipative zone (do-.O or vo-,l)

.-o-k3/6. This limit agrees with Paldor's (1982) analysis of his model

for long waves, as expected, since Paldor's model assumed inviscid flow

everywhere (d=O). For small d, the more general result of (22) is

quite close to the limiting value; for example, when do=.l (or v.=.9),

(22) gives w=.162k3  a difference of less than 3% from the limiting

case.

ewm
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The phase and group velocities derived from (22) are

2 2
c w/k=V (3-2v.) k (23a)

and cg = w/ak = 3c. (23b)

Since Cg>C, these waves have anamalous dispersion. They propagate only

downstream with phase speeds of O(k2), i.e., much slower than the downstream

current speed. Martin (1981) developed a numerical model of frontal

waves which featured a simple, active, upper layer and a dissipative

zone that also was advected by frontal displacements, but otherwise

unchanged, as here. His basic state structure was also similar. He

imposed a half wave sinusoidal displacement to the basic state, simulating

a trough, and computed the subsequent evolution of the flow. The particular

case most related to the present model had an equivalent value of k2=0.147,

within the long wave limit, kH=0.105 (small amplitude), F=O, and v,=2/3.

He found downstream propagating waves of normalized phase speed c=0.0334,

while (23a) gives c=0.0181, somewhat slower. He also found that shorter

waves developed downstream of the initial wave which had higher phase

speeds, implying anomalous dispersion behavior, as in the present model.

The low speed of long waves (meanders) of the Gulf Stream compared

to the swiftness of the current has been often remarked (Hansen, 1970;

Halliwell and Mooers, 1983). Comparison of present results with observations

of deep water Gulf Stream meander properties is therefore of interest,

though such comparisons must be made cautiously, because the ratio of

upper layer to total depth is not very small, about 1/5.

4Q.
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The most comprehensive observational data set for deep water Gulf

Stream meanders is that of Halliwell and Mooers (1983). They analyzed

meander properties from a four-year collection of weekly charts derived

from satellite infra-red images for the region up to 1000 km downstream

of Cape Hatteras and found two dominant modes: very low frequency

standing waves with periods of months to years and downstream propagating

waves with periods of several weeks. The present results pertain to the

latter, propagating mode.

First, I compare results for one particular case, then I compare

phase speeds and wavelengths over a wide frequency range. To compute

dimensional values from the present results for comparison the variables

must be unscaled. I selected as typical of the Gulf Stream f=9xlO "5 s'l(390N)

and ci=2.5 m/s, corresponding to a mean density difference of Ap/.

= 7xlO "4 and a pycnocline depth db*=900 m; consequently the Rossby

radius is X=27.8 km. For simplicity I took do=O (vo=l). The model then

gives

c* = 1.87 ci (,/f)
2/3, (24a)

A = 1.87 X(si/f)- 1/3, (24b)

where c* is the dimensional phase velocity, A the dimensional wavelength,

and i = I/T*, the reciprocal period. For Q=8 cycles/year (cpy), Halliwell

and Mooers (1983) found for the most energetic waves values of c*=9.1

cm/s and A=360 km; the model gives c*=9.3 cm/s and A=369 km, corresponding

to c=.0373 and k2=0.224. They roughly estimated the group velocity cg*

for the frequency band 4 to 10 cpy at 17 cm/s, while the model gives 28

cm/s. Results for c* and A are compared in Fig. 2. The model gives
*44
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Figure 2. Comparison of the observational results from Nalliwell

and Mooers (1983) and the present model for wave phase
speed c* and wavelength A for wave frequency 0 up to
10 cycles/year. Circles denote the values for the most
energetic waves and the brackets the associated 95%

confidence intervals from Halliwell and Mooers.
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c* Q2/3 and agrees well with both the trend and the particular values

of the observations. Alternatively, one may compare values of A,

although these are not independent of c*, since A=c*/Q. Values for P>lO

cpy werp not compared because k2>0.26 then, so that the long wave limit

is dubious.

In essence, the observations and model results have the following

common features: comparable, slow phase speeds for given frequency,

increasing phase speeds with increasing frequency, and anomalous dispersion

(c* > c*). This agreement suggests that the model provides a simple,
g

"lowest order" description of such waves in the same sense that Stommel's

(1966) model, used here for the basic state, does for the mean Gulf

Stream downstream of Cape Hatteras.

The scaled eigenfunctions X., Y., and Z,, computed through O(k2),

as well as their O(1) parts are plotted vs. x in Fig. 3 for the particular

case above where do=O and k2=0.224. Note that the O(k2 ) corrections are

modest even for this relatively large k2 . The trapped character of the

waves is evident in the clear exponential decay for large x. One may

more readily interpret the eigenfunctions by taking the real parts of

the wave forms (10) to give, for F=O,

u' = X. sin 0, v' = Y. cos 0, d' = Z, cos 0, h = H cos 0,

where 0(y,t) is the phase function given by (lOd). Since Yo>O, the

downstream wave velocity v' is in phase with the frontal displacement

h, so that at wave troughs (h=H or maximum frontal displacement toward

the parent pool) the downstream flow is faster than the basic state,

while at wave crests (h=-H) it is slower. Conversely, since Zo<O, the

interface displacement d' is out of phase with both h and v', so that

the interface shoals at the wave troughs but deepens at the crests. In

S.

2%

S . - ' : - ' , - . , . . - . .. . . . - . . . - . . . .
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ii~i Figure 3. Eigenfunctions for the long wave limit without basic state

cross-stream flow (6=0). Solid lines denote the eigenfunctions

through O(k2); dashed lines the 0(1) parts only.

• -

-''- i.•-","-","•" "•" .. , . .,. . , p ,"""4 "" " """ "". " """"''""""""'' " "".. . " - - ". " " ' ' " " --
.. .. ,4 ' . ,, - . 4 "' . " , ' " " " " -" " ." - ' - " " i ' i -i --



19

contrast u' is in quadrature phase with h, v', and d', having maximum

values where h=O and zero values at troughs and crests. The quadrature

phase with v' means that the Reynolds stress, the mean of -u'v' over a

period, will vanish, consistent with stable waves.

The velocity shear across the inner boundary may be expressed,

following (14) and (20c), as

k2Yo 1.)(0) cos 0 : k2cos 0 w/k3vo : c cos 0/Vo.

If this shear were required to vanish for all y and t, as in G83, then

w=Oc, and the waves would be steady and stationary, as in G83. There

the long wave limit, k2-O, corresponded to only a trivial solution for

the zeroth wave mode. All nontrivial, higher wave modes had k2 >0(1),

so that no long waves were possible. The present results may therefore

be viewed as an extension of G83 for the zeroth mode or long wave limit

obtained by relaxing the condition of no shear across the inner boundary.

6. Long waves with slow cross-stream current

I treat in this section long waves with slow cross-stream current

in the basic state, i.e., k2<<l with 0<F<<l (or utO). The wave forms

are given by (10) where the eigenfunctions to be found now are Xl(X),

Yl(x), and Zl(x), while the governing equations are given by (12). The

boundary conditions are that the eigenfunctions vanish for x-, as in

(13) for the F=0 flow, and that the interface depth and locally normal

fluid velocity at the displaced inner boundary match that of tle ,jacent

4-
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dissipative zone. The latter conditions are extensions of (14) and may

be written

Zl (0) = 0, (25a)

XI(0) = K + Se/d.2 . (25b)

Equation (25a) follows from full satisfaction of the interface boundary

condition (14a) by Zo(0) itself, while (25b) follows from the additional

physics brought by downstream amplitude change and basic state cross-

flow.

The boundary condition (25b) implies Xl(x) = 0(1), while (12a,b)

imply that Yl and Z are 0(k). Thus, expanding Xl as

XI(x) = Xl(0)(x) + k2 Xl(1)(x) +

and inserting it in (12c), the downstream momentum equation, gives to

0() in k2:

-(I + , (0) = K-- ( ) + Z° ( ° ) ) + Se dY0(0 )
a dx

After substitution for the F=O variables, one finds

Se~-

X1  (x) = (K + (26)

This satisfies the boundary condition (25b) identically.

4
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Solutions for Y and Z1 may now be obtained to lowest order in k2

from (12 a,b). With

-1 k S(x), Z1 : k T(x),

one may substitute for X from (26) and eliminate S in favor of T to

obtain

d2T
'-d - T 2Ke - x (2v + 1). (27)

. ;d x 2

Using the boundary condition T(O) : 0 from (25a), one may solve this to

g i ve

T(x) = ce- - v. x), (29)

which, in turn, yields,

S(x) =e v. + X) S- e-x (29)

To close the O(F) system for K, one must continue the solutions to

O(k2 ). Evaluating the downstream momentum equation (12c) to this order

gives

aX()s e  dY(l)

a Xll)(x) : v S + T - Y,(1) KZ ) djo~I dx

Here the right side is now completely known, except for <. Evaluating

'VP
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this at x=O and recognizing that X,1 )(0) 0 O, since x, ()(o) already

satisfies (25b), gives

2 Se
K - Vo(3-2Vo) (30)

This is the principal result of this section and shows three primary

features of the model wave growth. First, the sign of K is the same as

that of Se' Thus, for Se=l, when there is basic state cross-flow away

from the front (upward entrainment), the waves grow in the downstream

direction, indicating instability; conversely for Se=-l, when the cross-

flow is toward the front (downward entrainment), the waves decay, indicating

stability. Second, K is independent of wavenumber, so long as the waves

are long; thus, there is no preferential or fastest growing unstable

wave. Third, K=0(1), so that its dimensional counterpart form (10d) is

K* = FK/X,

much smaller than X- , i.e., the downstream growth scale will be O(x/F),

many Rossby radii.

The best documented observations of growing frontal waves are those

of the Gulf Stream downstream of Cape Hatteras. Hansen (1970) found K*

: (2±l)x10 3 km"I and Watts and Johns (1982) about 2.5x0 "3 km-I.

Halliwell and Mooers (1983) analyzed the greatest amount of data for

propagating, growing waves. For the frequency band 4<2<8.5 cpy they

found K* = (3.2±I.3)x0 -3 km" with no perceptible variation with Q.

The model results similarly show no change with Q. For vo=l and Se=l,

(30) gives K=2 . Thus, for X=27.8 km, as in section 5, K* would match

that of Halliwell and Mooers for F=0.044, corresponding to a cross-

stream flow into the parent pool of ub* Fci  11 cm/s, the order of

4e..
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magnitude one would expect. This value of <* corresponds to a downstream

e-folding distance of 310 km, roughly comparable to the wavelength .

predicted (Fig. 2) for this frequency band.

Further comprehension of the nature of wave amplitude growth or

decay in the model is available through analysis of the wave kinetic

energy. One may derive an equation describing this by first adding the

product of (8) with au' to the product of (9) with av', then averaging

the results over a wave period, and finally integrating over the entire

inviscid domain. One finds

dK'/dt= Rxy + Rxx + AK + Wp, (31)

where K' E au 2 + v'2>/2 dx,

the total wave or fluctuation kinetic energy,

0d

the rate of working by wave crosscorrelation Reynolds stress against

basic state downstream velocity shear,

RxxR - a<ua2>. dx,- -,xx f dx '
0

the rate of working by wave autocorrelation Reynolds stress against

basic state cross-stream current gradient,

AK d. 5(O)<(u'2 + v')Ix=O>/2,

.. K
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the net advection of wave kinetic energy by basic state cross-stream

volume flux,

and Wp --- a -u -- v- .L-> dx,
0

the rate of working by wave pressure gradient forces. The angle brackets

here denote quantities averaged over a wave period. The terms on the

right of (31) may be computed by taking the real parts of the products

of the fluctuating properties involved and using the wave forms and

subsequent expansions in k2 for the eigenfunctions. One then finds to

lowest order in k2 and F:

R = e Fy[4-3vo + vo-2 log do-1  vo- -1

Rxx = O(k2F),

AK = SeFy/2 ,

Wp = -SeFy(vo-2 log do-l Vo-I

where y - exp (2FKy)/2, the amplitude growth factor. Thus, in the net

kinetic energy production expressed by the right side of (31), Rxx is

negligible while the other three terms are O(F). Rxy has the sign of S e

for O<vo<l so that this Reynolds stress term extracts energy from the

basic state flow for Se--1 but supplies it for Se=-l. The log singularity

for do-*O reflects the singularity in u(O) for that limit. The advection

of wave kinetic energy likewise has the sign of Se, but the pressure

gradient work term has the opposite sign. In summing tnese terms the

.
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two log singularity terms cancel and the net result is simply the first

term of Rxy:

dK'/dt = (4-3v,) S Fy. (32)
6(3-2v.) e

Consequently, wave kinetic energy growth or instability occurs with

-e=1 , and decay with Se=-l, consistent with the result (30) for wave

amplitude growth K. For the limiting case vo-l (d.-*O), one has simply

dK'/dt = SeFy/6 = FKY/12.

In the net production or decay of wave kinetic energy, then, the

wave cross-correlation Reynolds stress <-u'v'> plays the critical

role, as one would expect from a model with only one active layer

("barotropic"). To O(F) and lowest order in k2 one may write the

fluctuation product as

. 'J' '= sn +(0
.u v -2y (Xa( 0 )Yo(0 ) sin a cos + FYo (0'X (0) a)

where a ky-wt. The time mean of the first term on the right vanishes

because its harmonic functions are in quadrature phase, i.e., the quadrature

'. phase between u' and v' in the F=O flow can produce no Reynolds stress.

5m S. =However, the O(F) flow alters this phase, as the O(F) terms in the wave

forms (10 a,b) for u' and v' show. In consequence, the second term

" . above produces the time mean Reynolds stress of O(F) that, in turn,

accounts for the net production or loss of wave kinetic energy.

.1.
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7. Concluding remarks

In this paper I have developed a simple, analytic model of small

amplitude, long, free wave disturbances to an established upper ocean

density front. The major characteristic of the model is the structure

-.- . of the basic state assumed, essentially Stommel's (1966) model of the

Gulf Stream in deep water where the active, upper layer has uniform

potential vorticity. Two major categories of frontal wave dynamics

result; the slow, downstream propagation of long waves which are stable

in the absence of basic state cross-stream flow (F=O), and modified

forms of these which grow or decay downstream in the presence of small
basic state cross-flow (O<F<<l). The model fits within the general

class of barotropic models, as it has only one active layer, but falls

outside the class of quasi-geostrophic models, as the basic state

current has a Rossby number of 0(1). It may be viewed as an extension

of G83 for the long wave or zeroth mode obtained by relaxing the condition

of no shear across the inner boundary.

-The major properties of the waves for F=0 are: (1) phase and group

speeds which are much slower than the basic state downstream current,-.- .,

(2) phase speeds which increase with the wavenumber squared or with the

frequency to the two-thirds power, and (3) anomalous dispersion. To

V lowest order in k2 the cross-stream momentum balance for the waves is

geostrophic and potential vorticity changes are surpressed by a simple

balance between perturbations in lateral shear of the downstream current

and interface depth. In the wave troughs, where the current is faster,

the interface shoals, and the reverse obtains for the crests. The

downstream momentum balance, in contrast, is neither simple nor geostrophic,

, , , • , • . • - - . . .. • . - - ." • , " , , . . - . , " .• -, , ",_ ' , , , 'W ,. ' .- . ;. ,* , ". . .- ,',-" -~ .1 "* , ' , , . .. .
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but contains both downstream and cross-stream advection of momentum, as

well as the geostrophic terms. For the limiting case of no dissipative

zone (d.-O) the lowest order results agree with those of Paldor (1982)

for k2-*0. They are also consistent with the numerical model of Martin

(1981). In application to Gulf Stream meanders the model gives phase

speeds or wavelengths that agree over the long wave band with the results

of Halliwell and Mooers (1983) based on satellite observations of propagating

waves. Thus, even for as deep a flow as the Gulf Stream, one need not

necessarily resort to more complicated two-layer or baroclinic models,

such as Orlanski's (1969), to obtain similar wave properties to those

observed.

A simple, barotropic long wave instability mechanism was found upon

adding small cross-stream flow 5 to the basic state, such as would be

driven by turbulent mass entrainment across the frontal interface within

the narrow dissipative zone. The mechanism differs fundamentally from

that of classical barotropic instability in quasi-geostrophic models

which require an extremum in basic state potential vorticity. Here, in

contrast, the potential vorticity is uniform. The model shows that wave

amplitude and kinetic energy grow for cross-flow toward the parent pool,

decay for the reverse, and are stable for zero cross-flow. The spatial

rate of downstream amplitude growth is independent of wavenumber for

long waves and has a downstream scale of O(x/F), many Rossby radii or

frontal zone widths. Finite cross-flow eliminates the perfect quadrature

phase found between u' and v' for F=O to yield small cross-correlation

Reynolds stress <'-u'v' which works against the basic state shear of
downstream velocity dv/dx to change wave kinetic energy. The results

are consistent with those of Halliwell and Mooers (1983), especially in



~ 577 Mr. F"'-7-" . . ... . ' + . .. ." .. *... + " '. ' " " " "." " "

rd -28

the lack of dependence of spatial growth rate on wavenumber.

The primary object of the model is to illuminate basic frontal wave

mechanisms and to suggest approaches for more sophisticated models,

especially numerical ones. The latter, in particular, should permit

full coupling of a dissipative inner zone structure, such as a time-

dependent version of Assaf's (1977) model, with a nearly inviscid outer

zone. In addition, they might treat other potentially important compli-

cations, necessarily omitted here, such as finite amplitude waves and

downstream variation in the basic state, simulating, for example,
-;4,'. .

-. progressive departure of volume flux from the Gulf Stream into the

interior, recirculation region.
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Figure Captions

Figure 1. Schematic cross-section of the model front.

Figure 2. Comparison of the observational results from Halliwell

and Mooers (1983) and the present model for wave phase

speed c* and wavelength A for wave frequency Q up to 10

cycles/year. Circles denote the values for the most

energetic waves and the brackets the associated 95%

confidence intervals from Halliwell and Mooers.

Figure 3. Eigenfunctions for the long wave limit without basic

state cross-stream flow ( =0). Solid lines denote the

eigenfunctions through O(k2); dashed lines the 0(I) parts

only.
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